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A method is given for  approximating an a r b i t r a r y  inhomogeneous thermal  line (ITL) as a 
ser ies  connection of homogeneous thermal  lines (HTL). The method is compared  with other 
approximation methods.  

Thermal  objects have distr ibuted pa ramete r s ;  they can be t reated via the theory of c i rcui ts  with 
distr ibuted pa rame te r s ,  in par t i cu la r  via the A - p a r a m e t e r  method [1]. 

By inhomogeneous thermal  line one means a class  of thermal  objects for which the thermal  conduc- 
tion may be represen ted  in one-dimensional  form,  i . e . ,  the heat propagates along one of the coordinate 
axes (rect i l inear  or  curvil inear) ,  with the c ros s - sec t iona l  area ,  ~, the specific heat Cp, and thermal  con- 
ductivity X as continuous functions of coordinate.  

Class ical  thermal  objects such as an unbounded hollow cylinder and a hollow sphere may be consid-  
e red  as inhomogeneous thermal  lines because their  c ros s - sec t iona l  a reas  vary in the direct ion of heat 
propagation.  

Other such lines a re  rods and thin symmet r i ca l  shells with constant or  variable c ros s - sec t iona l  
a reas  along the heat propagation direction,  and with or  without insulation ( thermal loss).  

The class of conduction problems that can be d iscussed for simple and composite ITL may be ex- 
panded by specifying the distr ibuted heat sources  (independent of tempera ture  or  direct ly  proport ional  to 
temperature) ,  and these may be functions of coordinates or  t ime.  

It is convenient to use the A pa ramete r s  in the Laplace t r ans fo rms  for the solutions for  this class 
of ITL for  c lass ica l  boundary conditions and for mixed ones; these can be obtained for  a given ITL as a 
uniformly convergent  se r ies  in powers of the Laplace t ransformat ion  constant s.  

The A pa ramete r s  for  a given ITL allow one to derive any sys tem function ( t ransfer  function, input 
impedance, and so on), and thus one can descr ibe the dynamic behavior in the time and frequency domains.  

Closed forms are  available for  the A pa rame te r s  for  par t icu lar  c lasses  of ITL, especial ly in te rms  
of special  functions: hyperbolic,  modified Besse l  functions of the f i r s t  and second kinds, and so on. 

Here we descr ibe a method of approximating an ITL via se r i e s -connec ted  HTL. As a rule, only a 
few HTL are needed to provide a good approximation,  so this method can be recommended for  examining 
the behavior  of ITL in the time and frequency domains.  The method has definite advantages over  approxi-  
mating the ITL as se r i e s -connec ted  elements with lumped pa rame te r s ,  and also over  other methods of ap- 
proximation: the f i r s t  ze ros  in the A pa ramete r s  and truncated ser ies  in s for  the A pa r ame te r s .  

We consider  an a rb i t r a ry  ITL whose thermophysical  pa ramete r s  k and Cp are functions of the co- 
ordinate r ,  while the c ro s s - s ec t i ona l  area  is some function of that coordinate: ~ = ~0 ~(r) .  

The behavior of the ITL is defined via two general ized fitting pa ramete r s  [2]: the lengthwise thermal  
res is tance  
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Fig.  1. Representat ion of an inhomogeneous thermal  line as 
se r i e s -connec ted  homogeneous l ines.  

Fig.  2. Tempera tu re  t rans fe r  function K(aB) as a function 
of dimensionless  frequency o~T for: 1) an inhomogeneous expo- 
nential thermal  line insulated at the end; 2) the same for ap-  
proximation via three homogeneous segments ;  3) the same 
for  approximation by three links with lumped pa r ame te r s ,  

Rto [degfW.m] (1) 
Rz (r) = Rzof(r)  - ~,(r) ~(r) 

and the lengthwise specific heat: 

c~ (r) = Czog (r) = czo % (r) ~ (r) [J.deg-m] (2) 

where R10 = 1/(X0% ) and Cl 0 = Cp0% are the values,  respect ively ,  of the two functions at the s ta r t  of the IT L 
(r = 0), while f ( r )  and g(r)  are  positive functions bounded in magnitude and having f i rs t  derivatives contin- 
uous in the interval [0, 1]. 

F i r s t  we demonstrate  how to t rans fe r  f rom the given ITL to an analogous ITL in which only the c r o s s -  
sect ional  area  var ies  along the coordinate,  while the thermophysical  pa ramete r s  are  constant.  We t rans -  
form the r coordinate via a law ~ (r) such as to get  an ITL whose A pa ramete r s  correspond to those of the 
initial line, but the lengthwise pa ramete r s  of the new (analogous) line in te rms  of ~ take the form 

Rz (~) = Rzo /%f  (~); 0 < ~ < ~ (0 = L, (3) 
cz (~) = Czo%~-(~), 

(3) gives the pa ramete r s  of the analogous ITL inhomogeneous solely on account where aef(~) = ~ / - ~ ,  i . e . ,  
of the variat ion in aef. 

The required  method of coordinate t ransformat ion  is available [2], and takes the form: 

r 

(~) = i" ~ f (r) g (r) dr = (' l /c~ (r)/~ (r) dr. (4) 

The conduction problem is t reated for this analogous ITL and thus gives the solution for  the initial 
ITL; methods for  t r ans fe r r ing  f rom ~ to r have also been given'[2].  

This shows why we r e s t r i c t  considerat ion to an ITL inhomogeneous solely in the a rea  of c r o s s - s e c -  
tion cr (r). 

The following methods of approximation have previously been published: f i rs t ly ,  the ITL is r ep re -  
sented as se r i e s -connec ted  elements with lumped pa rame te r s ,  which is somet imes  called the e lec t ro ther -  
mal  analog method [3]; secondly, one uses only the f i r s t  poles in the sys tem function for the ITL; and 
thirdly,  one can use a t runcated Laplace-cons tan t  power ser ies  for the sys tem function and locate two or  
three approximate poles [4]. 
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TABLE 1. P a r a m e t e r  Comparison for  an Inhomogeneous Exponential 
Thermal  Line and Three Approximations 

Coefficients and Exact 
zeros of A para- 
meters (ITL) 

values Values from approximations 

5 HTL 3 HTL 3 links wkh lumped 
parameters 

Coefficients in expansion of A as powers of s 
a a 0,368 
a s 0,0285 
a s 0,000999 

3,62 
23,4 
62,9 

122,0 
201,0 

$1 
S2 
$3 
s 4 
s~ 
86 
S 7 
65 
S9 
SlO 

0,373 
0,0296 
0,00096 

Fkstzeros in A 
3,57 

23,03 
61.69 

118,99 
190,93 
309,69 
420,46 
555,17 
708,42 
871,84 

0,383 
0,031 
0,0010 

3,50 
22,21 
56,06 

127,60 
199,86 
288,27 
429,34 
555,17 
697,13 
908,31 

0,532 
0,0531 
0,0014 

2,435 
13,18 
22,12 

The f i r s t  method is the commonest ,  and good computer  p rograms  are  available,  but some 40 sections 
are  needed to obtain a good approximation [4]. 

In the second method, there is a considerable initial difficulty in defining the f i rs t  poles in the sys tem 
function. 

The third method is simple and allows one to avoid using a computer ,  but it does not provide approxi-  
mation with any desi red degree of accuracy ,  and the e r r o r  of approximation cannot be es t imated.  

The la rges t  d iscrepancies  f rom the exact  t ransient  response occur  in all three methods at smal l  
t imes (high frequencies) ,  because the sys t em function has an infinite number  of zeros  and poles,  but in all 
three methods it is replaced by a rational f ract ion with comparat ively  low-order  polynomials in the numer -  
a tor  and denominator .  

The approximation should be pe r fo rmed  as follows. 

As an example we consider  an inhomogeneous exponential line with the charac te r i s t i c  

R l = R:l, exp(r); c t --~c:/,exp(--r). 

To simplify the calculations we have assumed that a0 = 1, I = 1, R0cp0 = 1. 

Figure 1 shows the ITL schemat ical ly ,  and  the method of division into HTL segments of equal length, 
with the constant c r o s s - s e c t i o n  of each HTL taken as the c r o s s - s e c t i o n  of the initial 1TL at the midpoint of 
the HTL. 

F o r  instance,  if the ITL is split  into n segments  of identical length d = l /n ,  the corresponding areas  
of the HTL will be 

a i = ~  ; ( I n = ~  ; . . . ;  ~n-~cr  2n 

The A - p a r a m e t e r  matr ix  for  an HTL of given length d represented  by the constant pa ramete r s  R 0' 
Cpo, and ai = const  is: 

ch r 

Zo 

where T = R0cp0d 2, Z c = 4 R0/(SCp0), R 0 = 1/X 0. 

Zc s h V ~  1 

ch 1/Ts 

(5) 

The A - p a r a m e t e r  matr ix  for  a sys tem of n se r ies -connec ted  thermal- l ine  segments  each with its A-  
pa rame te r  matr ix  [A]i is obtained by multiplying the lat ter ,  i . e . ,  [A] = [A]I [A]I I , . .  [A]n. 
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F o r  i n s t a n c e ,  fo r  the A p a r a m e t e r s  of a s y s t e m  of t h r e e  s e r i e s - c o n n e c t e d  ITL  we have 

A = A1A2A 3 ~ B1C~A3 ~ AIB~C3 § B1D~C3. (6) 

E q u a t i o n  (6) g i v e s  the i n i t i a l  equa t ion  f o r  r h e A - p a r a m e t e r s  of a s y s t e m  of t h r e e  H T L  s e g m e n t s .  
Here we have 

A = n 1 ch30 - -  n2ch0 (7) 

o r  

w h e r e  n i ,  n2, m 1, 

o r  

A = reich30 ~- m~ch0, 

and  m 2 a r e  n u m e r i c a l  c o e f f i c i e n t s  and  0 = ~ = ~/R0scp0 ( l / 3 ) .  

If the I T L  is  s p l i t  in to  5 H T L  s e g m e n t s ,  the A - p a r a m e t e r  is  found as  

A = n~ ch 5 0 - -  n 2 ch 3 O ~ n 3 ch 0 

(8) 

(9) 

A = mlch 50 + m~ch 30 + m~ch0, (!0) 

w h e r e  nl ,  n2, n3, mr ,  m2, and  m 3 a r e  n u m e r i c a l  c o e f f i c i e n t s  and  0 = , ~  = ~f R0scp0 ( t / 5 ) .  

The  r e a l  n e g a t i v e  z e r o s  of the A - p a r a m e t e r s  in (8)-(10) and (7)-(9) m a y  be d e t e r m i n e d  g r a p h i c a l l y  o r  
a n a l y t i c a l l y .  

T a b l e  i g ives  the f i r s t  z e r o s  fo r  the A - p a r a m e t e r s  and  a l s o  the f i r s t  t h r e e  c o e f f i c i e n t s  f o r  the A -  
p a r a m e t e r  of  the i n h o m o g e n e o u s  e x p o n e n t i a l  t h e r m a l  l ine ,  a s  w e l l  a s  the A - p a r a m e t e r s  d e r i v e d  by  a p p r o x i -  
m a t i o n  v ia  t h r e e  and  f ive  H T L  s e g m e n t s .  T h e s e  z e r o s  w e r e  u s e d  to c o n s t r u c t  the f r e q u e n c y  r e s p o n s e  of a 
s y s t e m  t h e r m a l l y  i n s u l a t e d  a t  the end  ( F i g .  2). 
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